Os olhos humanos nunca estiveram tão abertos para o Universo. Previsto para ser lançado neste ano, o James Webb é o mais sofisticado telescópio espacial já desenvolvido, com a missão de investigar o passado e o futuro do Cosmos. O projeto é uma parceria entre a Agência Espacial Norte-Americana (Nasa), a Agência Espacial Europeia e a Agência Espacial Canadense, e substitui o Hubble, que, entre outras coisas, ajudou a redefinir a idade do mundo, descobriu buracos negros e relevou as primeiras imagens do espaço profundo.
Leia Mais
Mulheres sofrem mais com o isolamento do que os homensCOVID-19: o que é verdade e o que é fake sobre as vacinas contra a doençaO drama da família que não tem impressões digitaisTime de astronautas que pousará na Lua em 2024 contará com uma mulherComo pensam os brasileiros na lista de cientistas mais influentes do mundoUma das áreas de pesquisa mais amplamente esperadas é o estudo de exoplanetas: aqueles que orbitam outras estrelas, que não o Sol. Quando um exoplaneta passa na frente de sua estrela hospedeira, a luz é filtrada pela atmosfera planetária, que absorve certas cores do espectro, dependendo da composição química. O Webb medirá essa absorção, usando seus poderosos espectrógrafos infravermelhos, para procurar as impressões digitais químicas dos gases da atmosfera.
Os astrônomos, inicialmente, treinarão o olhar do supertelescópio para mundos gasosos do tamanho de Júpiter, como WASP-39b e WASP-43b, porque eles são alvos mais fáceis de aplicar a técnica. Os resultados ajudarão a orientar estratégias de observação para super-Terras menores, principalmente rochosas e mais semelhantes ao nosso planeta — mundos nos quais a composição atmosférica poderá dar dicas sobre a possibilidade de serem potencialmente habitáveis.
Corpos ancestrais
O Webb também vai investigar o Universo distante, examinando galáxias cuja luz foi “esticada” em comprimentos de onda infravermelhos pela expansão do espaço. Ele capta ondas além do que o Hubble é capaz de detectar. Os aglomerados de galáxias são fontes particularmente ricas de alvos de estudo, já que a gravidade de um enxame estelar pode ampliar a luz de conjuntos galácteos de fundo mais distantes.
“Os seres humanos são quentes e brilham no infravermelho, os telescópios terrestres também brilham no infravermelho”, explica Mark McCaughrean, do Grupo de Pesquisa Interdisciplinar Webb, da Nasa. “Então, quando você chega a esses objetos frios com massa três vezes a de Júpiter, quase toda a luz sai em comprimentos de onda bastante longos, onde o próprio telescópio está brilhando intensamente. No espaço, você pode resfriar um telescópio até um ponto onde não há brilho de forma alguma nesses comprimentos de onda. E isso significa que, de repente, você deve ser capaz de ver todos esses objetos jovens, muito tênues e de massa extremamente baixa, coisas que nunca veria do solo.”
Para Roger Windhrost, da Universidade do Arizona e autor de um artigo sobre o Webb publicado no Astrophysical Journal Supplement, uma das mais fascinantes atribuições do supertelescópio será lançar luz sobre o início do Universo, a partir da observação das primeiras estrelas, que surgiram entre 200 a 400 milhões de anos após o Big Bang, evento calculado para ter ocorrido há 14 bilhões de anos. Observar esses corpos ancestrais é uma façanha que, segundo observações teóricas de Windhrost, o Webb será capaz de tornar realidade.
“Procurar as primeiras estrelas e buracos negros sempre foi um objetivo da astronomia. Eles nos contarão sobre as propriedades reais do Universo primordial, coisas que apenas modelamos em nossos computadores até agora”, diz o astrofísico. “Queremos responder a perguntas como: As estrelas binárias eram comuns? Quantos elementos químicos pesados foram produzidos, preparados pelas primeiras estrelas, e como elas afetaram a formação desses corpos?”, exemplifica. Os cálculos de Windhrost preveem que, sob determinadas condições de alinhamento, as lentes do Webb serão capazes de ampliar a luz emitida pelas estrelas 10 mil vezes ou mais.