Na vanguarda da área de imunização global, a professora Sarah Gilbert, pesquisadora do Instituto Jenner e criadora do imunizante de Oxford contra a covid-19, acredita que o salto tecnológico feito durante a pandemia de covid-19 vai facilitar o desenvolvimento de vacinas no futuro - e ela já tem em mente uma lista de doenças prioritárias cujo enfrentamento global seria beneficiado por novos imunizantes, potencialmente prevenindo futuras epidemias ou pandemias.
No caso da covid-19, usando uma tecnologia revolucionária, a equipe de Oxford, da qual Gilbert faz parte, elaborou uma vacina para iniciar testes clínicos em apenas 65 dias desde o início dos trabalhos. Em parceria com a farmacêutica AstraZeneca, mais de 1,5 bilhão de doses já foram distribuídas em todo o mundo.
A nova geração de vacinas é rápida de se fazer e altamente flexível. "É como decorar um bolo", afirma a pesquisadora.
Leia Mais
EUA liberam entrada de brasileiros vacinados a partir de 8 de novembro; entenda regrasCOVID-19: 5 números que refletem avanço da vacinação no BrasilQuem teve COVID deve tomar vacina, ao contrário do que disse BolsonaroCOVID-19: mulher vence luta recorde de 335 dias, segundo médicosAs 9 acusações contra Bolsonaro e a manobra governista para blindá-loO passo seguinte é pegar o vírus agressor, ou outros micróbios causadores de doenças, e matá-lo ou enfraquecê-lo para fazer a vacina.
Veja o exemplo das vacinas contra a gripe que são aplicadas sazonalmente todos os anos. A injeção para adultos é feita através do cultivo do vírus da gripe dentro de ovos. Os vírus são então purificados e mortos para formar a vacina.
Já o spray nasal para crianças contém vírus vivos, mas eles são enfraquecidos e tornados instáveis para que possam crescer nas temperaturas mais baixas do nariz, mas não no calor dos pulmões.
Mas é necessário muito trabalho para começar o processo do zero a cada nova doença, e muitas coisas podem dar errado. Você pode acabar com o equivalente no mundo das vacinas de um bolo solado.
O desenvolvimento da vacina contra o coronavírus de Oxford usou uma abordagem completamente diferente conhecida como "plug-and-play" (conecte e use, em tradução literal).
Com esse tipo de vacina, a maior parte do trabalho já foi feito — o bolo foi assado previamente, só precisa ser "decorado" para atingir seu objetivo.
"Nós temos o bolo e podemos colocar cerejas por cima, ou colocar alguns pistaches se quisermos uma vacina diferente", exemplifica a professora Gilbert. "Apenas adicionamos a última parte e está pronto."
O "bolo" da vacina de Oxford — ou plataforma, para usar o termo científico — é um vírus que causa a gripe comum em chimpanzés. Ele foi geneticamente modificado para torná-lo seguro, de modo que não possa causar infecções nas pessoas.
A "decoração" é qualquer material genético necessário para treinar o sistema imunológico a atacar. Esse material é adicionado ao bolo e o trabalho está feito.
Foi esse trabalho, aplicado ao coronavírus Sars-Cov-2, que levou a professora Gilbert a receber muitos reconhecimentos, que vão desde um título de dama real, concedido pela rainha Elizabeth 2ª, até uma boneca Barbie feita à sua imagem.
"A Barbie está confortavelmente instalada no meu escritório, mas sim, estou pensando em enviá-la como minha substituta", brinca a cientista. "Seria útil ter uma dublê que pudesse conceder entrevistas em meu lugar."
Duas das outras principais vacinas contra a covid — a Pfizer-BioNTech e a Moderna — usam outro estilo de tecnologia de vacina "plug-and-play" altamente adaptável. E todas essas tecnologias devem tornar mais rápido e fácil o desenvolvimento das vacinas do futuro.
No topo da lista de Gilbert estão 13 "patógenos prioritários". Enquanto a covid-19 pegou todos de surpresa, as doenças listadas por Gilbert são ameaças mortais bem conhecidas. Têm potencial para causar grandes surtos e podem ser as pandemias do futuro. Vacinas contra elas salvariam vidas.
A lista de Gilbert é a seguinte:
1) Mers — vírus causador da Síndrome Respiratória do Oriente Médio (Mers, na sigla em inglês) e membro da família dos coronavírus, surgiu em 2012 na Arábia Saudita e, desde então, já apareceu em países como Coreia do Sul, Estados Unidos, Catar, Líbano, França, Itália e Reino Unido.
2) Lassa — vírus transmitido por animais como ratos, que provoca uma febre hemorrágica aguda. Foi primeiro descrito em 1969 na cidade de Lassa, na Nigéria, e é endêmica em países do Oeste africano como Serra Leoa, Libéria, Guiné e Nigéria.
3) Febre hemorrágica da Crimeia-Congo — causada por um vírus transmitido aos humanos pela picada de carrapatos infectados ou pelo manuseio e preparo de animais infectados, já teve casos identificados na África, Rússia, Balcãs, Oriente Médio e Ásia.
4) Nipah — vírus transmitido por animais como morcegos e porcos, por alimentos contaminados ou diretamente de um humano a outro, pode causar síndrome respiratória aguda e encefalite (infecção do cérebro) em fetos. Apareceu pela primeira vez na Malásia em 1999.
5) Zika — vírus transmitido pelo mosquito Aedes aegypti e identificado pela primeira vez em 1947, na floresta Zika, em Uganda. Um surto no Brasil em 2015 provocou diversos casos de microcefalia (malformação em que a cabeça é menor do que o esperado) em bebês.
6) Ebola — vírus altamente infeccioso causador de febre hemorrágica, com primeiros surtos registrados em 1976 no Sudão e na República Democrática do Congo, tem morcegos frutíferos como hospedeiros.
7) Febre de Vale do Rift — provocada por um vírus transmitido por mosquitos como o Aedes aegypti e o Culex, com surtos registrados na África e Oriente Médio.
8) Chicungunya — vírus que provoca doença parecida com a dengue, também transmitido pelo mosquito Aedes aegypti. Uma vacina já está sendo desenvolvida pela farmacêutica francesa Valenva, que tem parceria com o Instituto Butantan e está em fase de ensaios clínicos.
9) Dengue — vírus que provoca doença infecciosa febril aguda, que pode se apresentar de forma benigna ou grave, transmitido pelo mosquito Aedes aegypti. A vacina existente no Brasil, chamada Dengvaxia, teve sua bula alterada pela Anvisa (Agência Nacional de Vigilância Sanitária em 2018) e é indicada apenas para as pessoas que já tiveram dengue.
10) Hantavírus — família de vírus transmitidos pela saliva, urina e fezes de roedores que pode provocar duas condições distintas: Síndrome Cardiopulmonar por Hantavírus (SCPH), mais comum nas Américas, incluindo o Brasil; e Febre Hemorrágica com Síndrome Renal (FHSR), mais frequente na Europa e Ásia.
11) Peste — doença infecciosa provocada pela bactéria Yersínia pestis, transmitida principalmente por picada de pulgas infectadas, com três possíveis manifestações clínicas: bubônica (quando afeta as glândulas linfáticas), septicêmica (quando se espalha pelo sangue) e pneumônica (quando transmitida de pessoa para pessoa por via respiratória). Também conhecida como "peste negra", "febre do rato" ou "doença do rato", ela causou a pandemia da Peste Negra, matando centenas de milhões de pessoas.
12) Marburg — vírus considerado um "primo um pouco menos mortal do Ebola", comum em locais onde existem morcegos da espécie Rousettus, como países do sul da Ásia e da África.
13) Febre Q — doença provocada pela bactéria Coxiella burnetii, transmitida ao homem em geral pelo contato com animais infectados como bovinos, ovinos e caprinos.
Financiamento para vacinas
Parte desse trabalho, da adaptação da "receita de bolo" para outras vacinas, já está em andamento. Oxford iniciou testes clínicos para uma vacina contra a peste usando sua tecnologia plug-and-play.
Separadamente, a Moderna já está pensando em usar sua própria tecnologia de mRNA para fazer uma vacina contra Nipah. O vírus mata até três de cada quatro infectados.
No entanto, a grande barreira para combater essas doenças será a mesma de sempre: dinheiro. Elas afetam algumas das partes mais pobres do mundo, e existe a preocupação de que, mesmo sob risco de pandemia, as pesquisas não conseguirão financiamento suficiente.
E, embora a tecnologia da vacina tenha avançado, os velhos inimigos ainda são os mesmos e alguns têm peculiaridades complicadas, que representam desafios monumentais.
Todas as vacinas precisam de um alvo — chamado antígeno — que treine o sistema imunológico para atacar.
Apesar de todos os problemas que a covid-19 causou, o vírus era bastante simples e o antígeno alvo era óbvio: a superfície externa do vírus é coberta por proteínas spike. Portanto, tudo o que os pesquisadores precisaram fazer foi conectar o material genético da proteína spike, treinar o corpo para reconhecê-la e ter a certeza de que a vacina iria funcionar.
No entanto, o antígeno alvo não é tão óbvio em outros micróbios mais complexos, como os três grandes assassinos — malária, HIV e tuberculose.
O HIV é um alvo em constante movimento. É um campeão da metamorfose que muda rapidamente para alterar sua aparência e enganar nosso sistema imunológico. É difícil saber como identificá-lo.
Já temos vacinas contra a malária e a tuberculose, mas elas estão longe de ser perfeitas.
Próximo grande salto
O mundo comemorou com razão o lançamento neste mês da primeira vacina contra a malária na África, mas ela é apenas cerca de 30% eficaz na prevenção de manifestações graves da doença. Isso porque o parasita da malária tem um ciclo de vida complexo, durante o qual ele sofre mutações para uma variedade de formas.
Uma bactéria da tuberculose também é muito mais complexa do que um coronavírus.
Há uma longa lista de antígenos para escolher no caso da tuberculose e da malária, e encontrar o certo tem se mostrado uma tarefa frustrante.
"Há uma gama muito grande de opções e não é óbvio qual devemos usar", diz Gilbert. "Está demorando muito para encontrar o antígeno certo, então é muito mais difícil. Eles são muito mais complicados do que esses patógenos de surtos, que são vírus bastante simples."
No entanto, a BioNTech está usando sua tecnologia para tentar desenvolver uma vacina contra o HIV.
Então, se o plug-and-play foi a revolução comprovada durante a pandemia, o que vem por aí?
"Acredito que o próximo grande salto em vacinas, em vez de (criarem-se) tecnologias totalmente novas, é tornar as tecnologias que temos mais estáveis. Isso será ótimo", diz Gilbert.
As vacinas são meio como bolos de sorvete — elas precisam ser mantidas na temperatura certa desde o momento em que são feitas até a hora em que são aplicadas.
Isso significa que há uma rede global de freezers, geladeiras, caixas frias e assim por diante, conhecida como cadeia de frio. Mas é difícil levar vacinas para algumas das partes mais remotas e pobres do mundo, especialmente onde não há eletricidade.
A pesquisadora também diz que seria muito bom se pudéssemos obter vacinas que não dispensem agulhas e injeções - já que, no caso de algumas infecções pulmonares (como a própria covid-19) é possível obter uma resposta imunológica melhor se administrarmos os imunizantes na forma de spray.
"Como é (o pulmão) para onde o próprio vírus normalmente iria, é diferente se você tiver uma infecção transmitida pelo sangue, como a dengue", pondera a especialista. "Mas isso (a transição para um spray) é algo que não podemos fazer muito rapidamente, há muitos testes de vacinas a serem feitos."
Já assistiu aos nossos novos vídeos no YouTube? Inscreva-se no nosso canal!
Leia mais sobre a COVID-19
- Vacinas contra COVID-19 usadas no Brasil e suas diferenças
- Minas Gerais tem 10 vacinas em pesquisa nas universidades
- Entenda as regras de proteção contra as novas cepas
- Como funciona o 'passaporte de vacinação'?
- Os protocolos para a volta às aulas em BH
- Pandemia, epidemia e endemia. Entenda a diferença
- Quais os sintomas do coronavírus?